Plasma power balance

DT fusion power: $P_{fusion} = P_{neutron} + P_{alpha particle}$ (17.6 MeV) (14.1 MeV)

Plasma power

balance: P_{alpha particle} + P_{auxiliary} = P_{conduction} + P_{radiation}

Power gain:

PLASMA

Condition	Q = P _{fusion} /P _{auxiliary}
"Plasma breakeven"	Q = 1
Minimum useful to study bulk plasma heating by fusion alpha particles	Q = 5
"Engineering breakeven"	Q ~ 10
Minimum requirement for an economic electricity-producing reactor	Q > 20
Expected range for attractive commercial reactors	Q ~ 30-50
• "Ignition"	Q = ∞